Ques [.]	tion Scheme		Marks	AOs
1	$ \begin{pmatrix} P & Q & R & S \\ A & 32 & 32 & 35 & 34 \\ B & 28 & 35 & 31 & 37 \\ C & 35 & 29 & 33 & 36 \\ D & 36 & 30 & 34 & 33 \\ E & 30 & 31 & 29 & 37 \\ F & 29 & 28 & 32 & 31 \end{pmatrix} $	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	B1	1.1b
	Reducing rows and then columns			
	$ \begin{pmatrix} P & Q & R & S & T & X \\ A & 0 & 0 & 3 & 2 & 1 & 8 \\ B & 0 & 7 & 3 & 9 & 12 & 12 \\ C & 6 & 0 & 4 & 7 & 6 & 11 \\ D & 6 & 0 & 4 & 3 & 5 & 10 \\ E & 1 & 2 & 0 & 8 & 7 & 11 \\ F & 1 & 0 & 4 & 3 & 6 & 12 \end{pmatrix} $ then $ \begin{pmatrix} A \\ B \\ C \\ D \\ E \\ F \end{pmatrix} $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	M1 A1	1.1b 1.1b
	e.g. augment by 1	then augment by 1	M1	1 1 h
	$ \left(\begin{array}{cccccccc} P & Q & R & S & T & X \\ A & 1 & 1 & 3 & 0 & 0 & 0 \end{array}\right) $	$\left(\begin{array}{ccccc} P & Q & R & S & T & X \\ A & 2 & 2 & 3 & 1 & 0 & 0 \end{array}\right)$	A1ft	1.1b 1.1b
	$\begin{bmatrix} B & 0 & 7 & 2 & 6 & 10 & 3 \\ C & 6 & 0 & 3 & 4 & 4 & 2 \end{bmatrix}$ followed by	y B 0 7 1 6 9 2 C 6 0 2 4 3 1	M1	1.1b
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	A1ft	1.1b
	$\left(F 1 0 3 0 4 3\right)$	$\left(F 1 0 2 0 3 2\right)$	A1	1.1b
	A – T, B – P, C – Q, (D	–), E – R, F – S	A1	2.2a
(9 marks)			narks)	
B1: M1: A1: M1: A1ft: M1:	cao – introducing a dummy task and appropriate Simplifying the initial matrix by reducing rocao Develop an improved solution – need to see one single covered unchanged. 4 lines to 5 lift on their previous table – no errors Finding the optimal solution – need to see on	iate value ws and then columns Double covered +e; one unco nes needed ne double covered +e: one unco	vered –e ; covered –e	and

Decision Mathematics 2 Mark Scheme

Pearson Edexcel Level 3 Advanced Subsidiary GCE in Further Mathematics – Sample Assessment Materials – Issue 1 – August 2017 © Pearson Education Limited 2017

cso on final table (so must have scored all previous marks)

allocation from the location of zeros in the table

table)

A1:

A1:

A1ft: ft on their previous table – no errors

one single covered unchanged. 5 lines needed to 6 lines needed (so getting to the optimal

cso – this mark is dependent on all M marks being awarded – to deduce the optimal

Quest	tion	Scheme	Marks	AOs
2(a	l)	16, 22, 29	B1	1.1b
			(1)	
(b))	$u_{n+1} = u_n + n + 1$	B1	3.3
			(1)	
(c))	As $u_{n+1} = u_n + p(n) \implies u_n = \lambda n^2 + \mu n + \phi$ and attempt to solve with $n = 1, 2, 3$	M1	1.1b
		$u_n = \frac{1}{n(n+1)+1}$	A1	1.1b
		ⁿ 2 2 20 101 (regions)	A1ft	1.1b
			(3)	
	(5 marks)			narks)
Notes:				
(a) B1:	cao			
(b)B1: Translating problem to mathematical model - correct recurrence relation needed				
(c) M1: A1: A 1ft·	1: An attempt to solve the recurrence relation to determine maximum number of regions : cao ft: Substitution of $n = 200$ into their quadratic u_{i} expression			

Question	Scheme	Marks	AOs
3 (a)	Corridors must be one-way	B1	3.4
		(1)	
(b)	e.g. $55 + x + 40 = 63 + 54 + 24$ or $7 + y = 54 + 5$	M1	2.4
	<i>x</i> = 46	A1	1.1b
	<i>y</i> = 52	A1	1.1b
		(3)	
(c)	(i) SACET $(= 5)$	M1	1.1b
	SDFET (= 5)	Al	1.1b
	(ii) Students must choose SACET, as they cannot travel from F to E	A1	2.2a
		(3)	
	A 40 $C60$ 20 35 12 6351 21 D 5 0 24 $T40$ B 19 F	B1	1.1b
		(1)	
(e)	Use of max-flow min-cut theorem	M1	2.1
	Identification of cut through AC, DC, DE, (EF), FT = 151 value of flow = 151	A1	3.1a
	Therefore it follows that flow is optimal	A1	2.2a
		(3)	
(f)	Consider increasing capacity of arcs in minimum cut	B1	2.1
	 Explanation based on a valid argument, such as: increasing the capacity of any arc other than FT would not increase the flow by more than 1, as total capacity directly in to T is only 152 increasing the capacity on FT could increase the total flow by 16 (increased flow along SAD, SD and SBD could all be directed through DF to F) 	B1	2.4
	Therefore school should choose to widen FT, which could increase the flow through the network by 16	B1	2.2a
		(3)	
		(14 n	narks)

Question 3 notes:		
(a)		
B1:	Explanation of assumption to use this model	
(b)		
M1:	Either a correct equation, or explanation that flow in $=$ flow out	
A1:	cao	
A1:	сао	
(c)		
M1:	One flow augmenting route found from S to T	
A1:	Two correct flow augmenting routes 5+	
A1:	Deduce that SACET must be used as students cannot travel from F to E as route is one-way	
(d)		
B1:	A consistent flow pattern = 151	
(e)		
M1:	Constructing argument based on max-flow min-cut theorem	
A1:	Use appropriate process of finding a minimum cut – cut + value correct	
A1:	Correct deduction that the flow is maximal	
(f)		
B1	Constructing an argument based on arcs in the minimum cut	
B1	Detailed explanation as to why choosing anything other than FT does not help	
B1	Correct deduction and correct increase in flow of 16	

Question	Scheme	Marks	AOs
4(a)	(a) Row minima: 1, 2 max is 2		1.1b
	Column maxima: 4, 4, 3 min is 3	A1	1.1b
	Row maximin (2) \neq Column minimax (3) so not stable	A1	2.4
(b)	Let A play strategy 1 with probability p and strategy 2 with probability 1- p , and using this to get at least one equation in p	M1	3.3
	Then if B plays strategy 1, A's gains are $4p + 2(1-p) = 2p + 2$	A1	1.1b
	If B plays strategy 2, A's gains are $p + 4(1-p) = 4 - 3p$ If B plays strategy 3, A's gains are $2p + 3(1-p) = 3 - p$	A1	1.1b
	↑ ↑		
	6		
	5 5		
	4 $2p+2$ 4		
	3 -3		
	3-p		
	1 - 4 - 3p - 1		
	p = 0 $p = 1$		
	Intersection of $2n \pm 2$ and $3 - n$ occurs where $n = \frac{1}{2}$	dM1	1.1b
	intersection of $2p + 2$ and $3 - p$ occurs where $p - \frac{1}{3}$	A1ft	1.1b
	Therefore player A should play strategy $1\frac{1}{3}$ of the time and play	Δ1ft	322
	strategy 2 $\frac{2}{3}$ of the time		J.2a
	The value of the game to player A is $2\frac{2}{3}$	A1	1.1b
		(9)	
		(12 m	arks)

Question 4 notes:		
(a)		
M1:	Finding row minimums and column maximums – condone one error	
A1:	Row minima and column maxima correct	
A1:	Explanation involving $2 \neq 3$ and a conclusion	
(b)		
M1:	Translating situation into model by defining variables and constructing at least one	
	equation	
A1:	One row correct	
A1:	All three rows correct	
M1:	Axes correct, at least one line correctly drawn for their expression	
A1:	Correct graph	
M1:	Using their probability expectation graph to find the probability by equating their two	
	correct expressions and attempting to solve as far as $p =$	
A1ft:	ft on their optimal intersection	
A1ft:	Interpret their value of p in the context of the question – must refer to play, player A	
A1:	сао	